If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-349=0
a = 1; b = 4; c = -349;
Δ = b2-4ac
Δ = 42-4·1·(-349)
Δ = 1412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1412}=\sqrt{4*353}=\sqrt{4}*\sqrt{353}=2\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{353}}{2*1}=\frac{-4-2\sqrt{353}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{353}}{2*1}=\frac{-4+2\sqrt{353}}{2} $
| t=88/8+88 | | P(x)=3x^2-5x | | 2x/7=-1/2 | | 19=u/4+13 | | 3t+6+4t-6t=1+4 | | 42=6(k+3) | | -11=3+k | | -7+8b=-11+8b+8-4 | | -12p+3p=11(p+14) | | x*x=180 | | y(2y+1)+10=0 | | 5x^2+6x=-3x^2+2x | | 42=6k+3 | | (x-1)^3=8 | | -12=a-2 | | j/6+41=45 | | 96=8(n+1) | | 2h+4-55=-3h+4 | | 5x+14=109 | | Y=117.8+-1.4x | | 16=-2h | | 5(3v-4)=40+3v | | 1/2(x+12=4x-1 | | 4=y-77/5 | | 3+14y-1=8y+52-4y | | 25d+5=80 | | 12=2+y | | 0.25x=5+5 | | y/2-10=28 | | P=129p=108 | | 5k-10÷2=-7 | | y-(-10)=-6 |